SHIPPING AND THE ENVIRONMENT From Regional to Global Perspectives Gothenburg, October 24th, 2017

Impact of maritime transport emissions on coastal air quality in Europe

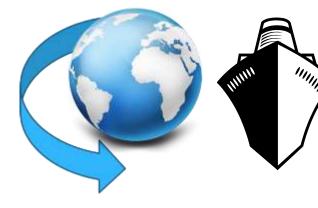
Mar Viana Institute of Environmental Assessment and Water Research mar.viana@idaea.csic.es

Framework

1. Impact of international shipping on European air quality

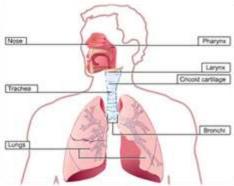
- Tracers and physico-chemical characteristics
- Impact on ambient PM
- Impact on gaseous pollutants

2. Mitigation strategies:


- Overview
- Case study: environmental and health benefits of designating the Marmara Sea (Turkey) as an ECA
- 3. Conclusions

(1) Impact of international shipping on European air quality

Rationale

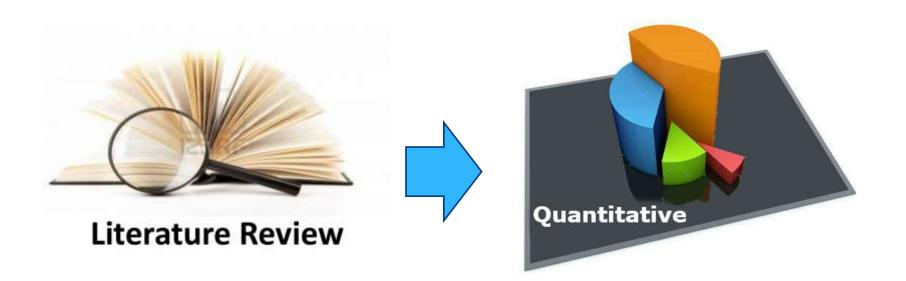

Emissions from the marine transport sector contribute **significantly** to air pollution globally

Increasing emission source:

- Globalization of manufacturing processes
- Increase of global-scale trade
- Relatively, large efforts to reduce other sources (industrial, power generation, etc.)
- More future growth expected

Human health

Climate



Ecosystems

How much of a problem?

Different approaches used in different countries
Not yet achieved the goals for protecting human health

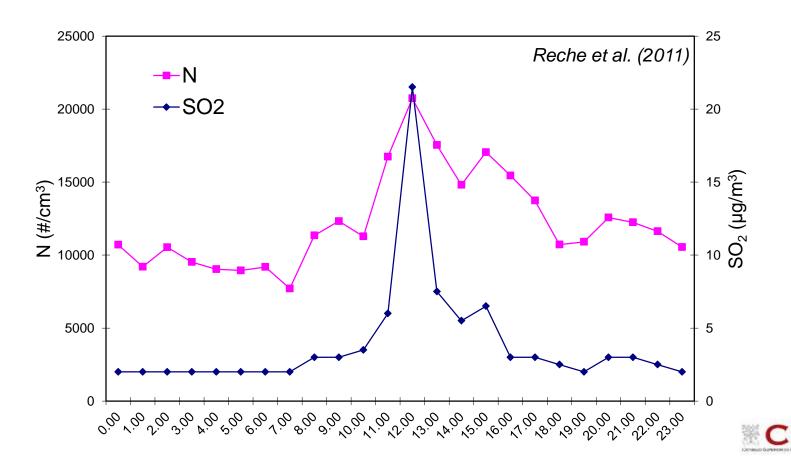
Chemical tracers

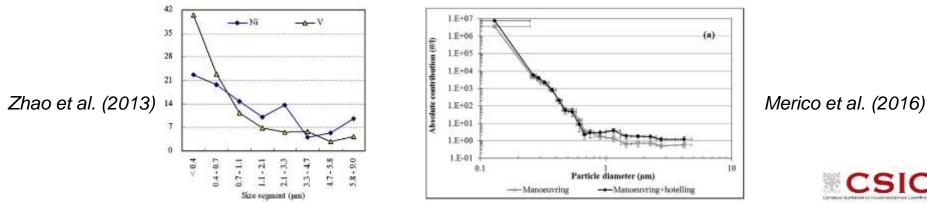
Well-known tracers of combustion based on crude oil:

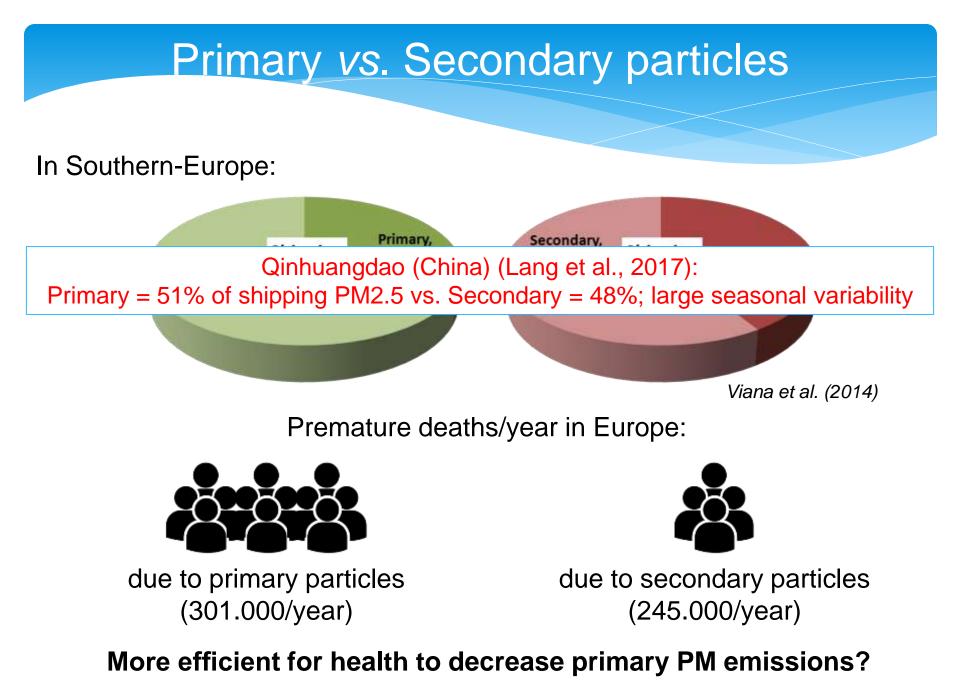
- V and Ni (>60 publications)
- Others: La, Th, Pb, Zn and SO_4^{2-} (>18 publications)

Where?	PMx	V/Ni	Reference	Where?	PMx	
Italy	PM_{10}	3.2±0.8	Mazzei et al. (2008)	Spain	PM ₁₀	
	PM _{2.5}	3.2±0.8	Mazzei et al. (2008)	Spain	PM _{2.5} PM ₁₀	
	PM ₁₀	3.2±0.8	Mazzei et al. (2008)	ltoby	PM _{2.5}	
Ship engine	10	2.3-4.5	Agrawal et al. (2008)	Italy	PM ₁₀ PM ₁₀	
Spain	PM _{2.5}	4-5	Viana et al. (2009)		PM ₁₀	
	PM ₁₀	4-5	Viana et al. (2009)		PM ₁₀	
Spain	PM ₁₀	3	Pandolfi et al. (2011)			
	PM _{2.5}	3	Pandolfi et al. (2011)	-	Fracer	
Europe	PM ₁₀	3-4	Viana et al. (2014)	<u>ah an</u>	appo abanaina fu	
Europe	PM _{2.5}	3-4	Viana et al. (2014)	chanę	ging fu	
Europe	PM ₁₀	2.3-2.5	Alastuey et al. (2016)			

Where?	PMx	Tracer	Value	Reference
Spain	PM_{10}	V/EC	<2	Viana et al. (2009)
	PM _{2.5}	V/EC	<2	Viana et al. (2009)
Spain	PM_{10}	La/Ce	0.6-0.8	Pandolfi et al. (2011)
	$PM_{2.5}$	La/Ce	0.6-0.8	Pandolfi et al. (2011)
Italy	PM_{10}	soluble V	80%	Becagli et al. (2012)
	PM_{10}	soluble V	>6 ng/m ³	Becagli et al. (2012)
	PM_{10}	soluble Ni	80%	Becagli et al. (2012)
	PM ₁₀	non-ss SO_4^{2-}/V	200-400	Becagli et al. (2012)


Tracers may be used in source apportionment models, BUT: hanging fuels result in changing tracers


Shipping emissions correlate with:

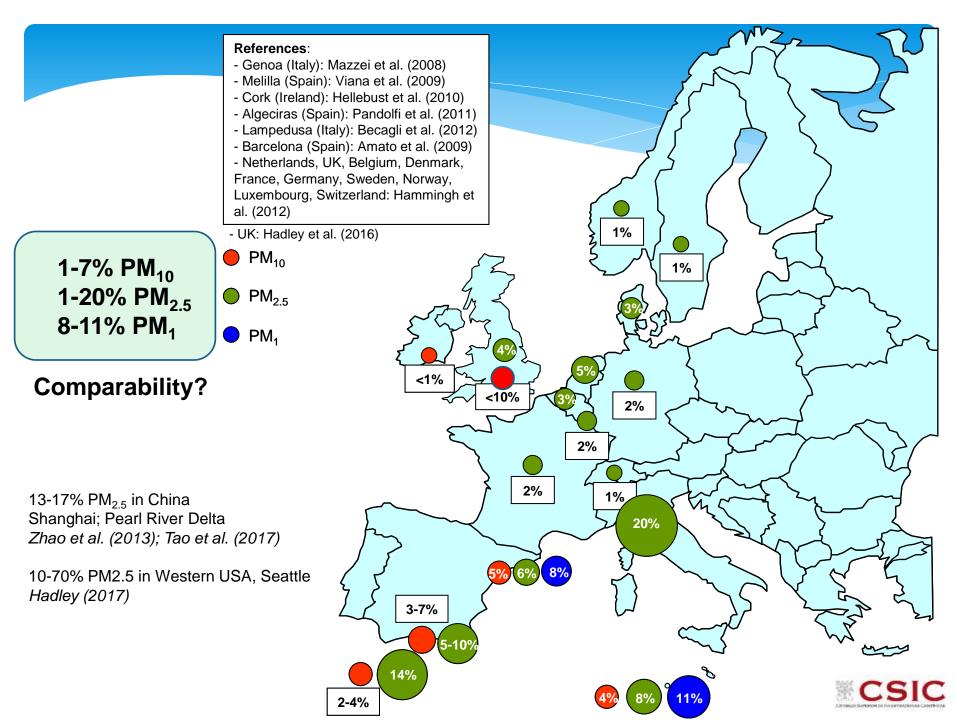

- > NO, NOx, SO₂ and VOCs
- > Particle number concentration (N): nucleation episodes (SO₂) (Reche et al., 2011)
- Particle size distribution (80-500 nm; e,.g., Masiol et al., 2016)

Particle size distribution

- Knowledge gap!
 - o Difficult to discriminate from background
 - Depends on measurement location (distance)
 - Direct plume: bimodal N size distribution (40 nm, 70 nm) (Isakson et al., 2001)
 - In ambient air:
 - Stronger contribution to fine than coarse aerosols (Viana et al., 2009)
 - Primary particles predominantly submicron (<1 µm) (Petzold et al., 2008; Healy et al., 2009); modes at <250nm & 350nm (Merico et al., 2016)
 - Impact on N, thus ultrafine particles (UFPs, <0.1 µm) (Saxe and Larsen,
 - 2004; Reche et al., 2011)
 - Particle number or toxicity better metrics than mass?

Andersson et al. (2009); Hammingh et al. (2012); Tian et al. (2013); Lang et al. (2017)

Impact on ambient PMx

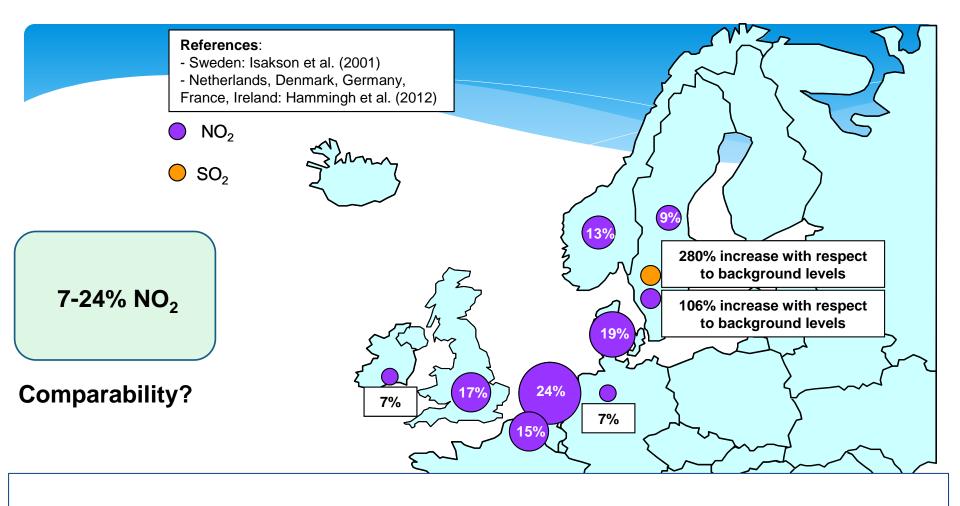

Source apportionment tools:

- dispersion models
- receptor models
- chemical tracer methods

Limitations:

- mixed with other combustion sources (common tracers)
- challenge of unique discrimination
- lack of comparability

	Airborne particles						
	Reference	Source	Contribution	Size fraction / PM component	Location		
	Kim & Hopke (2008)	Oil combustion	4-6%	PM _{2.5}	US		
	Mazzei et al. (2008)	Oil combustion	20%	PM ₁	IT		
	Minguillón et al. (2008)	Shipping	<u><5%</u> <5%	OC PM ₂₅	US US		
	Viana et al. (2008)	Oil combustion	10-30%	PM ₁₀ and PM _{2.5}	EU		
		Oil combustion	5%	PM ₁₀	ES		
	Amato et al. (2009)		6%	PM _{2.5}	ES		
			8%	PM₁	ES		
	Viana et al. (2009)	Shipping	2-4%	PM ₁₀	ES		
		- 11 3	14%	PM _{2.5}	ES		
	Hellebust et al. (2010)	Shipping	<1%	$\mathrm{PM}_{\mathrm{2.5-10}}$ and $\mathrm{PM}_{\mathrm{0.1-2.5}}$	IE		
	Pandolfi et al. (2011)	Shipping Shipping	3-7%	PM ₁₀	ES		
			5-10%	PM _{2.5}	ES		
	Becagli et al. (2012)		30%	nss SO42-	IT		
			3.9%	PM ₁₀	IT		
			8%	PM _{2.5}	IT		
			11%	PM ₁	IT		
		Shipping	1-5%	PM _{2.5}	North Sea		
	Hammingh et al. (2012)		1-5%	PM _{2.5}	NL, UK, Be, DK, Fr, DE, LU, Norway, SE, Switz.		
	Keuken et al. (2014)	Shipping	0.5 µg/m³	PM _{2.5}	NL		
	Pérez et al. (2016)	Harbour	9-12%	PM ₁₀	ES		
	Pérez et al. (2016)	Harbour	11-15%	PM _{2.5}	ES		
•							



Impact on gaseous pollutants

- Fewer number of studies compared to PMx
- Broader spatial coverage across EU (dispersion modelling tools)

Gaseous pollutants						
Reference	Shipping contribution	Species	Location			
Isakson et al.	106%*	NO ₂	Gothenburg (SE)			
(2001)	281%*	SO ₂	Gothenburg (SE)			
Keuken et al. (2005)	5-7 ppb	NO ₂	Rotterdam (NL)			
	7-24%	NO ₂	North Sea coastal countries			
	24%	NO ₂	The Netherlands			
	19%	NO ₂	Denmark			
	17%	NO ₂	UK			
Hammingh et al.	15%	NO ₂	Belgium			
(2012)	13%	NO ₂	Norway			
	9%	NO ₂	Sweden			
	8%	NO ₂	France			
	7%	NO ₂	Germany			
	7%	NO ₂	Ireland			

Contributions to gases (NO, NO₂, SO₂) > PM, N

Hotelling: contribution to $SO_2 < NO \& NO_2$ due to low-S fuels at berth

Contribution to NO >> NO₂ and provoked local-scale depletion of O_3

Merico et al. (2016)

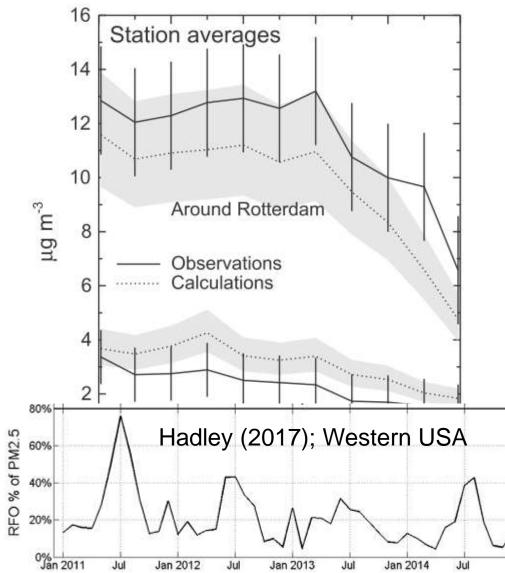
Impact of harbour operations

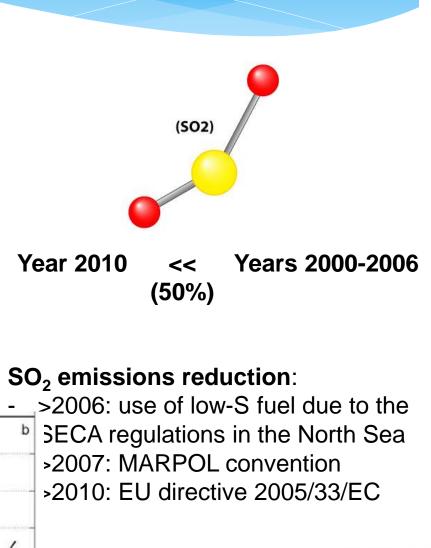
- Knowledge gap! Loading and unloading of vessels, fuelling, etc.
- Studies agree on the relevance of this impact:
 - S-Europe: road dust = 26% PM₁₀ in harbours; harbours = 9-12% urban PM₁₀ (Pérez et al., 2016)
 - Los Angeles harbour: vehicular sources + road dust = 54% of PMx, vs. shipping < 5% of PM_{2.5} (Minguillon et al., 2008)
 - Hotelling, manoeuvring (Merico et al., 2016)

(2) Mitigation strategies

Mitigation strategies

IMO (UN), MARPOL, SECAs, NECAs


EU Directive 2005/33/EC on sulphur emissions from ships


Technological measures:

- low sulphur fuels
- sulphur scrubbers
- NOx mitigation measures
- liquid natural gas (LNG)
- slow steaming
- soot particle filters...

Mitigation strategies

Mitigation strategies

Directive 2005/33/EC:

- SO₂ concentrations in 3 out of 4 harbours decreased (>2010)
- No decrease was observed in Tunis
- Average decrease SO₂ = 66% (daily)
- No significant changes for NOx & BC

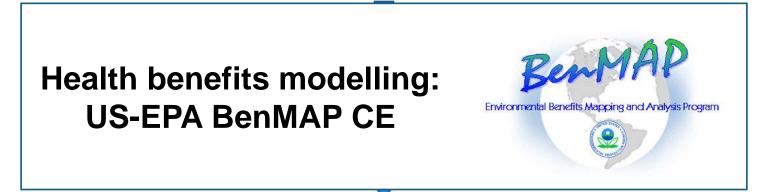
```
Schembari et al. (2012)
```


Sulphur reduction policy in the Baltic Sea SECA (2015):

- for the Baltic Sea only, the latest sulphur regulation is not cost-effective
- Expected annual cost = 465 M€
- Monetized benefit = 105 M€

Annturi et al. (2016)

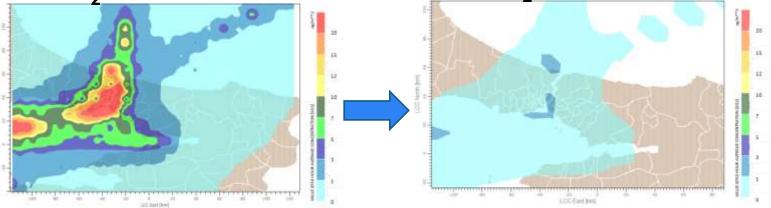
"Alternative fuel', "Ship design" or "Operation": Highest reductions = "Operation", with GHG emissions 10% lower than BAU *Winnes et al. (2015)*

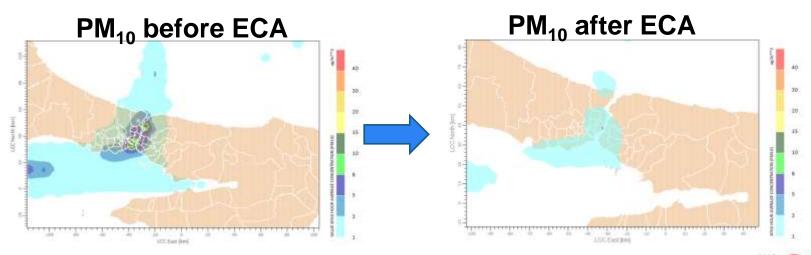


Case study: ECA in the Marmara Sea

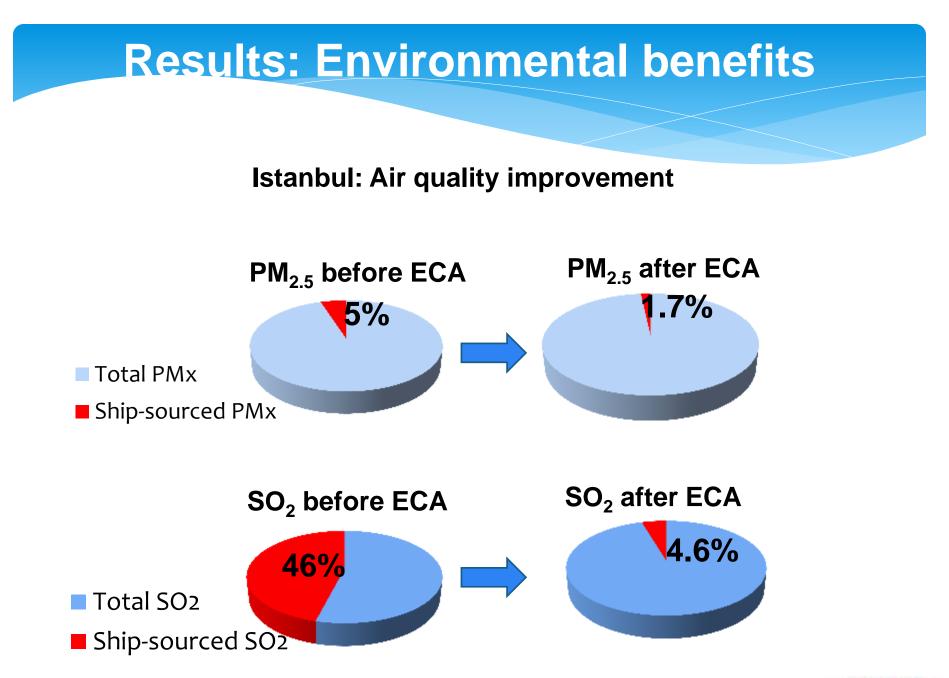
The Turkish government aims to apply to International Maritime Organization (IMO) for the Marmara Sea and the Turkish Straits to be declared an Emission Control Area (ECA) for SOx

To support the application to IMO: quantify the environmental and health benefits which would derive from designating the Marmara Sea and Turkish Straits as a sulphur ECA by the year 2020.


Challenges using BenMAP


Pollutant data: modelled SO₂, PM₁₀, PM_{2.5} with CALPUFF

SO₂ before ECA


SO₂ after ECA

CSIC

Highly spatially-resolved data

Results: Health benefits

		East domain (90% confidence intervals)		
Health outcome	Scenario	PM ₁₀	PM _{2.5}	SO ₂
Hospital admissions	Baseline	13,000	18,000	1,200
for respiratory	(total burden)	(4,900 to 20,000)	(6,800 to 20,000)	(-830 to 3,200)
diseases	Policy scenario	150	330	180
(ICD-10 J00-J99)	(number avoided)	(57 to 230)	(125 to 370)	(-108 to 460)
	% Change	-1%	-2%	-14%
U				
Lleonitel edmissione	Baseline	4,300	6,000	1,700
Hospital admissions	(total burden)	(770 to 7,800)	(1,900 to 9,700)	(770 to 2,500)
for circulatory	Policy scenario	45	97	190
system diseases	(number avoided)	(8.1 to 82)	(30 to 160)	(90 to 290)
(ICD-10 100-190)	% Change	-1%	-2%	-12%
L				
	Baseline	120	670	17
All-cause mortality	(total burden)	(50 to 190)	(140 to 1,000)	(15 to 19)
(ICD-10 A00-R99)	Policy scenario	1	13	2
C	(number avoided)	(0.4 to 1.6)	(2.7 to 19)	(1.7 to 2.2)
	% Change	-1%	-2%	-10%

Viana et al. (2015)

(3) Conclusions

Conclusions & knowledge gaps (1)

- What we know:
 - Number of studies on the impact of shipping emissions on air quality is not large, but increasing
 - \circ Impact on PMx, NOx, SO₂, and new particle formation (N)
 - Ultrafine particles and toxicity, better tracers than mass (?)
 - $\circ~$ Tracers are available: most commonly, V/Ni =3-5±1 in PM_{10} and PM_{2.5}
 - Contribution to PMx: 1-20% PMx, with large spatial variability
- What we don't know (so well):
 - Particle size distribution
 - Ratio primary to secondary particles? More efficient to reduce primary emissions (BC, V, Ni…)?
 - Discriminating sources with common tracers
 - Impact of harbour operations & how to mitigate them

Conclusions & knowledge gaps (2)

- Mitigation strategies are efficient: 50-66% SO₂ reduction, and 2^{ary} PM
- Cost effectiveness?
- Case study: potential improvements in Istanbul
 - Environmental benefits: 5% to 2% reduction of ship-sourced PMx; 46% to 5% reduction of ship-sourced SO₂ (annual means)
 - Health benefits: 12-14% decreased hospital admissions due to SO₂; 10% reduced mortality due to SO₂; 1-2% decreased hospital admissions due to PM_{2.5.}
 - Overall, beneficial policy from an environmental and health perspective
- Limitations:
 - Uncertainties in emissions modelling & AQ measurements
 - Need for regionally-specific health impact functions

Thank you for your attention

mar.viana@idaea.csic.es

