Employing high resolution nitrogen deposition data from atmospheric chemistry transport model simulations in ecosystem model studies with HBM-ERGOM

Neumann, Daniel* | Neumann, Thomas | Radtke, Hagen

1 Leibniz Institute for Baltic Sea Research Warnemünde, Rostock-Warnemünde, Germany

* contact: daniel.neumann@io-warnemuende.de

Introduction

- eutrophication of marine water bodies is a serious threat for the marine ecosystem and for their recreational and economic value
- atmospheric deposition contributes 1/3 to the nitrogen input into the North and Baltic Sea
- major contributing sectors to emission of nitrogen compounds: agriculture, energy production, road transport, and shipping
- shipping sector contributes 10% - 20% to marine nitrogen deposition
- North and Baltic Sea designated as nitrogen emission control areas (NECAs) from January 2021
- research questions:
 1. Which contribution does shipping-related nitrogen deposition have to the marine biomass?
 2. Do reductions in shipping emissions, i.e. by NECAs, lead to a reduced probability of the occurrence of algae blooms?

Conclusions

- longer time periods needed
- shipping is relevant contributor to nitrogen deposition but not for the biomass generation (short term)
- simulation over 2 to 10 years
- compare models: tagged shipping-related nitrogen vs. no shipping-related nitrogen
- do specific NECA runs
- consider further atmospheric nitrogen sources and tag them (i.e. agricultural emissions)

Results and Discussion

- simulation period: 2012
- CTM reproduced measurements of air quality backgr. stations (EMEP)
- N deposition in the range of lit., values for Baltic (178 kt N a⁻¹) but below for North Sea (314 kt N a⁻¹)
- correct system behavior (ecosys.): diatoms, flagellates and cyanobacteria blooms in correct months
- concentrations of biogeochemical tracers in realistic magnitudes

Materials and Methods

- 3D atmospheric forcing: COSMO-CLM
- chemistry transport model: Community Multiscale Air Quality (CMAQ)
- emissions: (i) SMOKE for Europe
- (ii) AER data for ships
- hydrodynamic: HIROMB-BDOS Model (HBM)
- ecosystem model: ERGOM
- shipping contribution
- tagged of elements by duplication of tracers and equations (auto generated)
- shipping-related and river-discharged nitrogen tagged

Acknowledgements

This research was performed within the project Helmos, financed by Federal Ministry of Transport and Digital Infrastructure of Germany (BMV), ZF (FZJ). Computer simulations were performed at the North-German Supercomputing Alliance (HLRN).

References | provided on the back side of the A4